From biomarkers to drug targets: genetic animal models of stress and psychiatric disorders

Eva E. Redei, Ph.D.

David Lawrence Stein Professor Department of Psychiatry and Behavioral Sciences Northwestern University Feinberg School of Medicine

GENE or ENVIRONMENT?

 Complex, but even single-gene diseases have genetic and environmental contribution to individual variation

- Complex diseases affect the most people
- Environment is everything that is not heritable, but what about epigenetics?!?!

Animal Models to Study Human Diseases

No single animal model can fully replicate any human disorder. Each model, however, can help to clarify certain aspects of the disorder (the concept of endophenotypes).

Biological markers: associated with illness in some population Endophenotypes are specific manifestation of an illness:

•Associated with illness

Heritable and/or State-dependent
Familial co-segregation with illness
Found in some unaffected relatives

Endophenotypes

Associated with illness Heritable

State-Independent

2

31.

4) -

(but may require challenge/provocation)

Familial co-segregation with illness

Found in some unaffected relatives (probabilism vs.detecminism)

Genome-wide association studies, and why animal models are still useful

- GWAS can
- successfully localize positive signal to a few tens of kilobases, usually the span of a single gene, therefore,
- identify the genetic determinants of human complex disease directly

• But,

- In most diseases, genetic variation segregating at these genes explains only a small fraction of cases that could be accounted for by genetic causes
- Environment cannot be controlled in humans
- Function of the gene(s) can be elucidated in animal models

Outline

- Genetic contribution to individual coping with stress
 - Quantitative Trait Loci analysis
 - X-congenic strains
 - Genetic and transcriptomics: a combined analysis
- Genetic contribution to depressive behavior
 - -Quantitative Trait Loci analysis
 - -Genetic and transcriptomics: a combined analysis
 - -Biomarkers for depression: a translational approach

What is Coping?

• Definition 1: The cognitive, behavioral and physiological processes aimed at diminishing or terminating **stress**.

• Definition 2: General **adaptive** patterns of responses to environmental challenges

Coping Styles are:

• Stable trait characteristics: active and passive coping strategies

• Genetic contribution: higher concordance in identical twins; heritable in animals

Implications for health and disease:

• Passive coping increases vulnerability to

- Heart disease
- Hypertension
- Diabetes
- Rheumatoid arthritis pain (perception)
- Anxiety disorders
- Depressive disorders, etc.
- Active coping increases resilience in the face of adversity

How do we measure coping strategies?

Any behavioral test with a choice for active or passive response to a threat, without punishment!

DB (Defensive Burying) a test with ethological validity

- The animal can avoid the threat by actively burying the prod or passively avoiding it.
- Approaching the prod is a form of stereotypy

Strategy to identify Quantitative Trait Genes

- •QTL analyses identify chromosomal location
- •Congenic strains are generated
- •Congenic strains are characterized behaviorally
- •SNP analysis of parental strains compared to reference strain BN narrow regions
- •Microarray analyses of relevant brain regions identify differentially expressed genes within these narrow regions
- •These genes are candidate QTGs waiting functional confirmation

Quantitative Trait Loci Analysis (QTL)

<u>Quantitative Trait</u> – a heritable character that is transmitted as continuous variation

Loci - positions that genes occupy on a chromosome

Quantitative Trait Locus Analysis

Quantitative Trait Locus Analysis

* Selected for WKY Stresp3-locus and F344 genotypes on autosomes

*F344.WKY-(DXRat50-DXRat96)/Eer - preliminary congenic

	Genotype	Marker or SND	Location (Mb)				
······Significance Threshold	Genotype			Condidate	Candidato	Brain Region	Fold Change
-				Locations		DI all'I NEGION	Fold Change
/	F344		88,514,169				
	?			← 1 - 4		Amygdala	-1.53
	??				1.	Frontal Cortex	-1.42
	WKY	G/T	95,074,160			Hippocampus	-1.51
	WKY	A/G	95,487,735		2	Amygdala	-1.46
	WKY	C/T	96,012,286		<u> </u>	Hippocampus	-1.56
	WKY	C/T	96,457,403		3	Amygdala	-1.20
	WKY	C/T	96,722,166		5.	Hippocampus	-1.24
	WKY	A/T	98,285,593		Л	Frontal Cortex	-1.19
	WKY	A/C	98,998,455		4.	Hippocamous	-1.23
	WKY	DxRat50	99,773,357		5.	Amygdala	-1.36
	WKY	A/C	100,781,233	<u> </u>	6.	Hippocampus	1.34
	WKY	G/T	103,022,500	<u> </u>	7.	Amygdala	-1.32
	WKY	C/T	104,799,115		8.	Hippocampus	1.15
	WKY	A/T	106,125,462	~ 0	9.	Hippocampus	-1.22
	WKY	A/G	106,474,065	← 7	10.	Hippocampus	-1.21
	WKY	C/T	107,012,927		11.	Frontal Cortex	-1.16
	WKY	C/T	107,227,193		12.	Frontal Cortex	1.11
	WKY	A/G	107,956,175		13.	Frontal Cortex	1.12
	WKY	C/T	108,613,039			Amygdala	-1.34
	WKY	DxRat71	109,514,212		14.	Hippocampus	-1.51
	WKY	A/G	110,819,544				
	WKY	G/T	111.531.390				
	WKY	A/G	112,109,283				
	WKY	DxRat17	112,204,504				
	WKY	C/T	112.483.874				
	WKY	A/G	114.036.787			1.0	
	WKY	A/G	115.067.688	← 8		4 Genotype	5244
	WKY	A/G	115.467.035			$Ker/SNP = BN \neq$	F344
	WKY	G/T	116 110 562			rker/SNP ≠ BN ≠	F344
	WKY	Δ/Τ	116 944 293			ion with no war	Kers/SNP
J I	WKY	DxRat94	120 688 640				
	WKV	DyRat96	120,000,040	← 9 - 13			
	2	DANACO	122,003,038	<u> </u>			
	E244		124 500 225	<u> </u>			
4.0 3.6 3.2 2.8 2.4 2.0 1.6	F344		124,390,223	1			
LOD score							

полионностногоду кутровани,

Istanbul, 2009

Conclusions:

- QTL analysis of the reciprocal F2 intercross of WKY and F344 rat strains identified three loci on the X chromosome contributing to the variance in coping behaviors: *Stresp1*, *Stresp2* and *Stresp3*.
- A novel locus, at the proximity of *Stresp2*, emerged for duration of burying that is confirmed by generation of a congenic strain (X:88,514,169-124,590,225 Mb).
- Since hypoactivity is consistent with the decreased duration of burying phenotype, this congenic strain presents a consistent profile of inhibited or passive behavioral responses to environmental challenges.

Conclusions (cont):

- SNP analysis identifies regions/haplotypes that likely harbor genes responsible for these behaviors, as these regions differ from those of F344s and BN; both of which show active behaviors in these tests.
- Microarray results combined with the QTL analysis of the congenic strains and SNP-based haplotype analysis identified two major regions: at X:88.5-99.0Mb and at X:120.8-123.0Mb.
- Within these regions there are five potential QTGs that show significant expression differences between WKYs and F344s in more than one brain area.

Outline

Genetic contribution to individual coping strategies

- Quantitative Trait Loci analysis
- X-congenic strains

- Genetic and transcriptomics: a combined analysis

Genetic contribution to depressive behavior

- -Quantitative Trait Loci analysis
- -Genetic and transcriptomics: a combined analysis
- -Biomarkers for depression: a translational approach

Evaluation of Putative Endophenotypes for Major Depression

	Specificity	State-independence	Heritability	Plausi bili ty	Total
Psychopathalogical endophenotypes					
Depressed mood (mood bias)	+	+	0	+++	6
Anhedonia (implaned reward function)	+	+	+	+++	9
Impaired learning and memory	±	+	0	+	2
Direction of appetite change	-	±	+	++	4
Diurnal variation	++	+	+	++	6
Exec. cogn. function (response speed)	+	+	++	+	5
Psychomotor change	-	-	0	+	1
Increased stress sensitivity	-	+	++	+++	9
Biological enabphenotypes					
REM sleep abnormalities	±	+	+	++	7
Increased anygdala activity	++	+	0	+++	6
Decreased subgenual PFC activity	+	+	0	+++	5
Left ACC volume reduction	+	++	0	++	7
Hippocampal volume reduction	_	++	+	++	6
Reduced 54HT _{LA} receptor BP	+	++	+	+++	7
Tryptophan depletion	+++	+++	++	+++	14
Catecholamine depletion	+	+++	0	+++	7
dev/CRH test	±	++	++	+++	11
CRH dysfunction	+	+	+	+++	6

Neuroendocrinology Symposium, Istanbul, 2009

Hasler et al., 2004

Animal Models of Depression

Stress Models

- Stress induced
 - Chronic Mild Stress
 - Social Defeat
 - Prenatal Stress
 - Maternal Separation
- Tests for despair/depressive behavior
 - Forced Swim Test
 - Tail Suspension
 - Learned Helplessness

Genetic Models

- Selectively Bred
 - Maudsley reactive
 - Roman high and low avoidance
 - Flinders Sensitive Line
 - High swim/Low swim
 - Wistar Kyoto More/Less Immobile
- Transgenic models
 - Single candidate genebackground!!
- Inherent behavior
 - Wistar Kyoto (WKY)

<u>Criteria for a Major</u> Depressive Episode:

- (at least 5 symptoms present
- in a 2-week period)
- •Depressed mood
- •Diminished interest or pleasure in activities
- •Significant weight loss or gain
- •Insomnia or hypersomnia
- •Psychomotor agitation or retardation
- •Fatigue or loss of energy/despair
- •Diminished ability to concentrate
- •Recurrent thoughts of death

<u>Mod</u> in ar	<u>leled</u> nimals	<u>Modeled</u> in WKY
140		
Ye	S	Yes
Ye	S	Yes
Ye	S	Yes
n Ye	S	Yes
Ye	es	Yes
Ye	es	?
N	Ō	

WKY as an animal model of depression

- Exhibits <u>behaviors</u> analogous to those seen in depressed patients
- Depressive-like behavior is <u>reversed after</u> <u>treatment</u> with antidepressants (TCAs and MAOIs)
- Exhibits <u>neuroendocrine and sleep changes</u> similar to those seen in depressed patients

Affimetrix microarray studies comparing gene expressions in:

- 1. amygdala, hippocampus, frontal cortex and striatum of male and female WKY and Fisher 344, WKY more immobile (WMI) and WKY less immobile (WLI), chronically treated with vehicle or desipramine. (192 arrays)
- 2. in peripheral blood of the same animals

Selectively bred Wistar Kyoto substrains

Behavior of WMI and WLI substrains in the open field test

Strategy to identify biological markers for depression: a translational approach

Genetic Markers

- 1. QTL of F2 WKY x F344 analyses identify locus
- 2. SNP analysis of parental strains compared to reference strain BN narrow regions
- 3. Selectively bred sub-strains
- 4. Microarray analyses of relevant brain regions between QTL strains and selectively-bred strains identify differentially expressed genes within these narrow regions
- 5. Differentially expressed genes mapped to synthenic region with human loci identified by GWA studies are candidates

Expression Markers

- 1. Selectively bred sub-strains
- 2. Microarray analyses of relevant brain regions AND BLOOD between selectively-bred strains identify genes differentially expressed in both BRAIN AND BLOOD
- 3. Validate candidate biomarkers in blood samples of depressed patients and controls

Despr3 locus synthenic to human depression and neuroticism locus at Chr 1:24,207,596 -42,694,514bp

Identification of potential QTGs SNP analysis of *Despr3* locus

		Chr	bp	WKY	F344
	G/T	5	1407384 59	0	2
	СЛ	5	1411734 87	2	0
	A/G	5	1425019-22	2	0
	C/G	5	1425592 51	0	2
	СЛ	5	1432281 63	0	2
	A/C	5	1434718 54	0	2
	СЛ	5	1436335 65	0	2
	СЛ	5	1449941 77	2	0
	A/G	5	1450319 80	0	2
	A/G	5	1475696 68	0	2
	СЛ	5	1477185-86	2	0
1	A/G	5	1501987 28	0	2
	СЛ	5	1503522-36	2	0
	СЛ	5	1505112-34	2	0
	A/T	5	1509849 43	0	2
	СЛТ	5	1517123 42	0	2
	A/G	5	1528404 41	0	2
	<u>^</u>	TONT	а 1°сс с т		ът

0=same as BN 2=differs from F344 and BN

Candidate genetic biomarkers at Depr3 locus between WMI and WLI

		Rat Chr5	Human Chr 1	
Gene Tile	Gene Symbol	Start (þ) Stop (bp	Start (bp)	Stop (bp
Stroma membrane-associated protein 1-like	Smap11	14154455 14159058	40612315	4066158
Mitochodrial ribosomal proten S15	Mrps15	14539772145408 6 5	36702556	3669396
Similar to RIKN cDNA 1810007P1Ørganc solute transperprotin l	RGD1306596/@21	145410 8 6 14544142	36656095	366886 9
Similar to2610027C Kikprotein	RGD1308876/ Fam176b	14550283 145504 2 4	36562342	365602 9
Collaga abha-2(VIII)chain preamsor	Col8a2	145679 8 1 145682 2 5	36333433	3633843
serine incorporator2	Serinc2	14927936 14930185	31658550	3168012
pumiio1 (Drosopila)***	Puml	149651267 14953080	31311151	3117690
Hypotheital protein LOC688757fmem200 transmembrane protein 200B	LOC688757/ Tmem200b	150777 9 8 150780 3 8	29318526	2932306
*** al thre brai region, highlightedgenes are primary an Neuroendo Is				

Candidate genes at Despr3 locus between WKY and F344

		Rat Chr 5	Human Chr 1	
Gene Title	Gen e Symbol	Start (bp) Stop (bp)	Start (bp)	Stop (bp)
Similar to schlafen-like 1	LOC500540/ Slfnl1	1411292 981411337 69	41176358	41620940
similar to RIKEN cDNA 3110037116/ chromosome 1 open reading frame 176	RGD1309802/ C1orf176	1415076 831415091 54	40747000	40754799
stromal membrane-associated protein 1-like	Smap11	141544545141590968	40612315	40661581
CAP, adenylate cyclase-associated protein 1 (yeast)	Cap1	1421744 411422011 20	40278842	40310908
hippocalcin-like 4	Hpcal4	1424904 621424983 59	39929676	39917232
RGD1559909/ chromoso me 1 open reading frame 122	RGD1559909/C1orf122	1441808 891441834 89	38046556	38047713
mitochondrial ribosomal protein \$15	Mrps15	145397772145408365	36702556	36693960
Collagen alpha-2(VIII) chain precursor	Col8a2	145679681145682525	36333433	36338437
ADP-ribosylhydrola se like 2	Adprhl2	1456854 951456911 73	36327073	36332120
tyrosyl-tRNA synthetase	Yars	1483503 631483789 89	33005620	33013427
serine incorporator 2	Serinc2	149279136149301815	31658550	31680112
syndecan 3	Sdc3	1494879 381495189 17	31154067	3111856 7
Hypothetical protein LOC688757/transmembrane protein 2008	LOC688757/ Tmem200b	150777398150780378	29318526	29323008
YTH domain family 2	Ythdf2	1510805 991510893 93	28935723	28968874

Strategy to identify biological markers for depression: a translational approach

Genetic Markers

- 1. QTL of F2 WKY x F344 analyses identify locus
- 2. SNP analysis of parental strains compared to reference strain BN narrow regions
- 3. Selectively bred sub-strains
- 4. Microarray analyses of relevant brain regions between QTL strains and selectively-bred strains identify differentially expressed genes within these narrow regions
- 5. Differentially expressed genes mapped to synthenic region with human loci identified by GWA studies are candidates

Expression Markers

- 1. Selectively bred sub-strains
- 2. Microarray analyses of relevant brain regions AND BLOOD between selectively-bred strains identify genes differentially expressed in both BRAIN AND BLOOD
- 3. Validate candidate biomarkers in blood samples of depressed patients and controls

Candidate genes from expression profiling

- 155 genes whose expression was greater in WLI blood compared to WMI blood
- 61 genes whose expression was greater in WMI blood compared to WLI blood.
- **101** genes differed in both brain and blood between the two sub-strains.
- 25 genes showed the greatest difference in both brain regions and blood: these genes are our primary candidates for biomarkers

Biomarker candidates for human depression

Summary

- Identified novel genetic animal models of passive coping and depression
- Passive coping may underlie many mood disorders
- The combination of genetic and transcriptomic analyses provide candidate genes that contribute to these endophenotypes
- Preliminary evidence indicate that blood biological markers can be identified based on the animal model data.

Collaborators

• Northwestern

(past and present lab members) Claire Will Nasim Ahmadiyeh Leah Solberg Wood Amber Baum Kelsey Budd Fraser Aird Kristen Debus **Brian Andrus** Daniel Schaffer Laura Sittig Pradeep K. Shukla

Joe Takahashi Kazuhiro Shimomura David Mohr Joyce Ho

Jackson Lab

Gary Churchill Peter Vedell Renhua Li Liam O'Brian Qian Li

• Free University Berlin

Kathryn Staar