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Abstract
The isolation of melatonin was first reported in 1958. Since the demonstration that pineal

melatonin synthesis reflects both daily and seasonal time, melatonin has become a key

element of chronobiology research. In mammals, pineal melatonin is essential for

transducing day-length information into seasonal physiological responses. Due to its

lipophilic nature, melatonin is able to cross the placenta and is believed to regulate multiple

aspects of perinatal physiology. The endogenous daily melatonin rhythm is also likely to play

a role in the maintenance of synchrony between circadian clocks throughout the adult body.

Pharmacological doses of melatonin are effective in resetting circadian rhythms if taken at

an appropriate time of day, and can acutely regulate factors such as body temperature and

alertness, especially when taken during the day. Despite the extensive literature on

melatonin physiology, some key questions remain unanswered. In particular, the amplitude

of melatonin rhythms has been recently associated with diseases such as type 2 diabetes

mellitus but understanding of the physiological significance of melatonin rhythm amplitude

remains poorly understood.
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Melatonin and the photoneuroendocrine
system

Overview of melatonin’s discovery

The discovery of melatonin was made by Lerner et al.

(1958), coincidently only a few years after publication of

Harris’ monograph, Neural Control of the Pituitary Gland

(Harris 1955), which is often considered to have estab-

lished neuroendocrinology as a discipline and is cele-

brated in this special issue of the journal. Lerner was

seeking to identify the molecule(s) in bovine pineal glands

known to cause blanching of amphibian skin. This work
led to isolation of a factor, termed melatonin, which

causes potent aggregation of melanin granules in frog

melanocytes (Lerner et al. 1958). Shortly afterwards, the

chemical structure of melatonin was revealed as N-acetyl-

5-methoxytryptamine (Lerner et al. 1959). From its origins

in a dermatology laboratory, melatonin has become a key

molecule in the field of chronobiology. As described

in this review, melatonin provides an extremely robust

endocrine signal of both circadian time and day-length,

enabling it to influence both daily and seasonal rhythms

in many species. Melatonin is synthesised by multiple

tissues in the body, but the pineal gland is the major
on 60 years of neuroendocrinology.
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contributor to circulating melatonin concentration, as

pinealectomy abolishes detectable melatonin in the blood

(Lewy et al. 1980a).
Circadian rhythmicity of pineal melatonin synthesis

Concentrations of melatonin in the blood exhibit a

pronounced circadian rhythm, with elevated levels during

the biological night in all species. The primary driver of

melatonin rhythmicity is the endogenous circadian

system, as daily rhythms of melatonin persist in constant

dim light and in the absence of rhythmic environmental

cues. In most mammalian species, the circadian rhythm

of pineal melatonin synthesis is due to a poly-synaptic

pathway linking the pineal gland to the hypothalamic

suprachiasmatic nuclei (SCN), which house the master

circadian clock in mammals (Moore & Eichler 1972,

Stephan & Zucker 1972). The pathway has been mapped

by classical lesioning and tracer studies (reviewed in

Moore (1996)), together with transneuronal retrograde

tracer experiments (Larsen et al. 1998, Teclemariam-

Mesbah et al. 1999). From the SCN, it passes via the

paraventricular nuclei, the upper thoracic intermediolat-

eral cell column of the spinal cord and then sympathetic

neurones of the superior cervical ganglion, which inner-

vate the pineal. This series of connections linking retina

to SCN to pineal gland is sometimes referred to as a

photoneuroendocrine system.

The circadian, SCN-driven sympathetic innervation of

the pineal gland results in activation of arylalkylamine-N-

acetyltransferase (AA-NAT), a key enzyme in the melatonin

synthesis pathway (Klein 2007). Noradrenaline released by

the sympathetic neurones stimulates cAMP production

and AA-NAT activity in pinealocytes via both b1 (Deguchi

& Axelrod 1972, Klein & Weller 1973) and a1 (Klein et al.

1983, Vanecek et al. 1985) adrenoreceptors. In rodents,

this leads to high amplitude rhythms in pineal Aa-nat

mRNA abundance (Borjigin et al. 1995, Coon et al. 1995)

indicating that AA-NAT synthesis is a major mechanism

driving the melatonin synthesis rhythm. However mela-

tonin synthesis in all species also involves important

post-translational mechanisms such as the stabilisation of

AA-NAT protein by interaction with 14-3-3 proteins

(Ganguly et al. 2001). In comparison to rodents, pineal

physiology of ungulate and primate species is believed to

primarily utilise post-transcriptional mechanisms, as it

exhibits very little daily change in mRNA of Aa-nat and

other genes known to be rhythmic in the rodent

pineal (Coon et al. 1995, Privat et al. 1999, Johnston et al.

2004). Moreover stimulation of bovine pinealocytes
http://joe.endocrinology-journals.org
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with noradrenaline induces AA-NAT activity without

any change in Aa-nat mRNA expression (Schomerus

et al. 2000). Further data describing species differences

in melatonin synthesis are reviewed elsewhere (Stehle

et al. 2001).

In addition to being an SCN-driven rhythm, the daily

variation in melatonin synthesis is also in part regulated

by the ambient light-dark cycle. Light is a powerful

synchroniser of SCN rhythms (reviewed in Hughes et al.

(2015)). Furthermore, exposure to light during the night

acutely inhibits melatonin synthesis and secretion in both

animal models (Klein & Weller 1972, Illnerova et al. 1979)

and humans (Lewy et al. 1980b). The daily rhythm of

melatonin concentration is thus the result of complex

interplay between endogenous and exogenous factors.

Melatonin as a marker of circadian phase

The timing of the endogenous melatonin rhythm is

considered the most reliable marker of SCN clock timing

and is used routinely to assess circadian phase in humans.

Melatonin can be measured directly in plasma and saliva

samples, or indirectly as its urinary metabolite, 6-sulpha-

toxymelatonin (aMT6s), thus providing circadian phase

information in both laboratory and non-laboratory studies

(reviewed in Skene & Arendt (2006)). Compared with core

body temperature and cortisol rhythms, melatonin is least

affected by activity, sleep, meals and stress.

The timing of the rhythm can be measured by

estimating the time of melatonin onset, peak or offset

(reviewed in Skene & Arendt (2006)). The time of

melatonin onset in dim light conditions, the so-called

dim light melatonin onset (DLMO; Lewy & Sack 1989), has

frequently been used as a marker of circadian phase,

although it may be better to measure both melatonin

onset and offset as there is some evidence to suggest that

these may be shifted differentially (Warman et al. 2003).

Preferably, however, the whole melatonin profile should

be measured to capture both melatonin timing and

amplitude. The timing of the melatonin and urinary

aMT6s rhythms has provided important information of

an individual’s circadian phase in numerous studies of

circadian desynchrony and has also been used to optimize

the timing of light and melatonin in the treatment of

circadian rhythm sleep–wake disorders.

Melatonin as an endocrine calendar

The 24-h melatonin signal not only represents endogen-

ous circadian time but also encodes seasonal information.
Published by Bioscientifica Ltd
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Specifically, the duration of elevated melatonin concen-

tration is proportional to duration of the night and thus

dependent upon the prevailing photoperiod (reviewed in

Reiter (1993)). This photoperiodic regulation of melatonin

signal duration is a consequence of adaptation of SCN

physiology. Day-length is encoded in multiple SCN

rhythms, including gene expression, electrical activity

and gating of sensitivity to input stimuli as reviewed

elsewhere (Johnston 2005, Coomans et al. 2015). Altered

neuronal output from the SCN then drives melatonin

signal duration via the SCN-pineal poly-synaptic pathway

as described above.

The ability of melatonin to provide an endocrine

representation of photoperiod is an essential component

of the seasonal biology of many species. Removal of the

pineal gland has long been known to block the ability of

photoperiod to regulate the seasonal physiology of

mammals. However there was debate in the literature as

to what element(s) of the melatonin signal actually carried

photoperiodic information. Early studies of intact ham-

sters revealed an ability of melatonin injections to

induce short photoperiod-like physiology, but only

when given at certain times of the day (Tamarkin et al.

1976, 1977). Possible explanations for these data included

rhythmic sensitivity to melatonin and extension of the

endogenous melatonin signal duration by the injections.

A series of elegant timed infusion studies conducted by

multiple laboratories using pinealectomised animals

later revealed that duration is likely to be the key feature

of the melatonin rhythm that regulates photoperiodic

changes in physiology (reviewed in Bartness et al. (1993)).

The contrast between short duration signals in the

summer and long duration winter signals is both necessary

and sufficient to drive subsequent seasonal rhythms

in diverse processes such as reproduction, pelage, metab-

olism, and immune function (Goldman 2001, Stevenson

& Prendergast 2015).
Melatonin receptors

Endogenous melatonin acts through activation of mem-

brane bound, high affinity, G-protein coupled receptors.

Early studies using the radioligand 2-[125I]iodomelatonin

identified and quantified high-affinity melatonin

receptors in numerous vertebrate species (Dubocovich

1995, Reppert & Weaver 1995, Vanecek 1988a). Sub-

sequent molecular cloning identified two melatonin

receptors, Mel1a (MT1) and Mel1b (MT2) in mammals

(Reppert et al. 1994, 1995a) and an additional melatonin

receptor, Mel1c, in birds (Reppert et al. 1995b). The MT2
http://joe.endocrinology-journals.org
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receptor was cloned from humans (362 amino acids) and

is 60% identical to the human MT1 receptor at the amino

acid level (350 amino acids). The MT2 receptor is

preferentially expressed in the human retina and selected

brain regions, notably the hippocampus. The expressed

recombinant MT2 receptor exhibits similar ligand binding

characteristics and pharmacology to the MT1 receptor

(Kd !200 pM; specificity 2-iodomelatonin Omelatonin

R6-chloromelatonin ON-acetylserotonin OOserotonin)

and is also coupled to Gi resulting in inhibition of

adenylate cyclase, cAMP concentration and downstream

signal transduction pathways (Reppert 1997).

There is a high density of melatonin receptor

expression in neuroendocrine tissues, including the

hypothalamic SCN, pituitary pars tuberalis (PT) and

developing gonadotroph cells. Melatonin receptors have

also been detected elsewhere, including the adrenal gland

(MT1), arteries and heart (MT1, MT2), lung (MT1, MT2),

liver (MT1, MT2), kidney (MT1), small intestine (MT2),

skin (MT1, MT2), and in T and B lymphocytes (MT1)

(reviewed in Zawilska et al. (2009)). However the physio-

logical function of melatonin is not well understood in

many of these tissues. Notable examples of melatonin’s

regulation of endocrine function include regulation of

metabolic physiology, such as insulin secretion and

glucose homeostasis (Peschke 2008, Karamitri et al.

2013). This review, however, will focus on neuroendocrine

examples, primarily via its action in the hypothalamus

and pituitary gland.
Circadian actions of endogenous melatonin
in adults

The MT1 receptor is strongly expressed in the SCN, which

is considered a major site of melatonin action. Early

studies using mice with targeted disruption of the Mel1a

(MT1) receptor revealed that this receptor was necessary

for the acute inhibitory action of melatonin on SCN

neuronal firing (Liu et al. 1997). However, phase shifts by

melatonin were still evident in these MT1 deficient mice

(Liu et al. 1997). Subsequent transgenic studies (von Gall

et al. 2002b, Jin et al. 2003) and pharmacological studies

showing blockade of melatonin-induced phase shifts by

MT2 antagonists (Dubocovich et al. 1998, Hunt et al. 2001)

suggest MT2 receptor involvement in melatonin’s phase

shifting action.

In addition to its effects in the SCN, melatonin’s

robust rhythmicity in the circulation makes it an

attractive candidate molecule involved in the synchroni-

sation of circadian clocks throughout the body. This issue
Published by Bioscientifica Ltd
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has been discussed in detail by others (Stehle et al. 2003,

Pevet et al. 2006).
Regulation of seasonal physiology via the
pituitary pars tuberalis (PT)

Aside from the SCN, the pituitary gland is the best studied

melatonin target tissue. In adult mammals, the dominant

pituitary site of melatonin action is the PT, a thin layer of

the anterior pituitary that surrounds the pituitary stalk

and extends rostrally along the ventral surface of the

median eminence (reviewed in Wittkowski et al. (1999)).

Co-localisation studies have revealed expression of MT1

receptors in thyroid stimulating hormone (TSH)-positive

cells of the PT (Klosen et al. 2002, Dardente et al. 2003a).

These cells are often referred to as PT-specific thyrotrophs.

Despite their expression of TSH, they lack cellular

components associated with the primary population of

thyrotroph cells in the pars distalis of the anterior

pituitary (Bockmann et al. 1997). It is now believed that

melatonin signal duration drives the photoperiodic

control over multiple aspects of neuroendocrine physi-

ology, including the lactotrophic and reproductive axes,

via the PT in adult mammals.
Photoperiodic regulation of prolactin secretion

In many seasonally breeding species, the lactotrophic axis

exhibits robust annual cycles with increased prolactin

secretion during the spring and summer months, irrespec-

tive of the timing of the breeding season. Compelling

in vivo evidence for an intra-pituitary mechanism regulat-

ing photoperiodic prolactin rhythm came from the

hypothalamo-pituitary disconnected (HPD) ram model.

The HPD ram lacks neuronal connections between the

hypothalamus and pituitary gland, but has intact pituitary

vasculature (Clarke et al. 1983). Despite this lack of

neuronal connection between hypothalamus and pitu-

itary, alternate summer and winter photoperiods are able

to drive appropriate annual cycles of plasma prolactin

concentration (Lincoln & Clarke 1994).

Studies of pituitary melatonin receptor expression

revealed a lack of melatonin receptors on lactotroph cells,

implying an indirect mechanism of melatonin on

prolactin secretion. The importance of the PT in the

seasonal regulation of prolactin secretion was first

demonstrated by the fact that PT-conditioned medium

stimulates prolactin secretion from pituitary pars distalis

cell cultures (Hazlerigg et al. 1996, Morgan et al. 1996).

It was therefore postulated that the photoperiodic
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-15-0119
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melatonin signal regulates the release of a prolactin

secretagogue, termed tuberalin, from the PT. Later

evidence indicated that tuberalin secretion is dependent

upon photoperiod (Stirland et al. 2001) and endogenous

seasonal timing mechanisms (Johnston et al. 2003a,

Lincoln et al. 2005). Despite strong evidence for the

existence of tuberalin, attempts to identify it have not

been successful (Lafarque et al. 1998, Guerra & Rodriguez

2001, Graham et al. 2002). More detailed reviews of this

subject can be found elsewhere (Johnston 2004, Dardente

2007, Dupre 2011).
Photoperiodic regulation of reproduction

More recently, the PT has also been implicated in

melatonin-driven seasonal reproductive rhythms. Based

upon the results from the HPD ram (Lincoln & Clarke

1994) and lesioning studies in seasonally breeding

hamsters (Maywood & Hastings 1995), ‘a dual site

hypothesis’ was originally proposed, in which melatonin

acted at the PT to regulate seasonal prolactin rhythms, but

in the hypothalamus to regulate seasonal reproduction.

Despite this supportive evidence, there were also data in

conflict with the dual-site hypothesis. For example,

some seasonally breeding species had no detectable

melatonin receptors within the hypothalamus (Weaver

& Reppert 1990).

Data have linked thyroid hormone physiology to

seasonality in birds for many years (reviewed in Follett &

Nicholls (1984)). A more recent breakthrough in the

understanding of seasonal physiology also came from

studies of birds, specifically the Japanese quail. This

research revealed that photoperiod regulates expression

of deiodinase (DIO) enzymes within the hypothalamus

to drive seasonal variation in local concentration of

tri-iodothyronine (T3), the most active form of thyroid

hormone (Yoshimura et al. 2003, Yasuo et al. 2005). This

model has now been extended to mammals, in which it

had been previously demonstrated that thyroid hormone

signalling is involved in seasonal rhythms (Vriend 1985,

Nicholls et al. 1988, Moenter et al. 1991, Webster et al.

1991). In brief, melatonin action on the PT-specific

thyrotroph cells is proposed to regulate release of TSH,

which then functions via a retrograde signalling pathway

to regulate DIO expression in hypothalamic tanycytes that

line the third ventricle (Hanon et al. 2008). Increased

expression of DIO2 and/or reduced DIO3 in the lengthen-

ing photoperiods of spring and summer then increases

conversion of thyroxine to T3. The mechanism to produce

locally elevated T3 concentrations in long photoperiods
Published by Bioscientifica Ltd
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appears to be the same in both long and short-photo-

period breeders (Revel et al. 2006, Hanon et al. 2008). This

therefore suggests that species-specific mechanisms within

the hypothalamus regulate seasonal breeding status down-

stream of T3 generation. For further detail, readers are

referred to recent reviews of this topic (Yoshimura 2013,

Dardente et al. 2014, Wood & Loudon 2014).
Decoding the durational melatonin signal

Despite recent advances in determining the endocrine

mechanisms through which melatonin drives seasonal

physiology, the cell signalling mechanisms used to

interpret melatonin signal duration are still unclear.

To date, evidence suggests that melatonin duration is

able to alter sensitisation of intracellular signal transduc-

tion pathways and also determine the temporal coinci-

dence of rhythmic gene expression.

Chronic activation of receptors that are negatively

coupled to adenylate cyclase (AC) can lead to sensitisation

of AC signal transduction pathways (Thomas & Hoffman

1987). Indeed, pre-treatment of Chinese hamster ovary

cells expressing human MT1 (Witt-Enderby et al. 1998),

neonatal rat pituitary cells (Pelisek & Vanecek 2000) and

pancreatic INS-1b cells (Kemp et al. 2002) with melatonin

sensitises subsequent stimulation by forskolin. However

it is the PT cell model that has been most used to study

sensitisation effects of melatonin, as reviewed in detail by

Barrett et al. (2003). In the context of understanding the

decoding of photoperiodic melatonin signalling, it is not

sufficient to identify the presence of sensitisation per se in

PT cells, but determine whether there are differences in

sensitisation between melatonin signal durations encoun-

tered in long and short photoperiods. This experiment was

performed in ovine pituitary cells that, in many temperate

latitudes, would be exposed to melatonin signal duration

of w8 h in a long summer photoperiod and 16 h in a short

winter photoperiod. Exposure of ovine PT cells to 16 h of

melatonin increases AC sensitivity to stimulants such as

forskolin (Hazlerigg et al. 1993) and CTX (Barrett et al.

2000), in addition to causing a significant increase in basal

AC activity (Hazlerigg et al. 1993). By contrast, exposure to

a melatonin signal of 8-h or less causes less sensitisation

(Hazlerigg et al. 1993). Altered sensitisation of PT cells by

physiologically encountered melatonin signals may there-

fore contribute to photoperiodic timing mechanisms.

Identification of clock gene expression in the PT (Sun

et al. 1997) invited speculation that there may be circadian

mechanisms within the PT involved in decoding melato-

nin signals. Initial studies focused on Period1 (Per1), which
http://joe.endocrinology-journals.org
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is known to be sensitive to cAMP-dependent signalling,

and revealed a transient increase of expression immedi-

ately following the morning decline of melatonin

(Morgan et al. 1998, von Gall et al. 2002a). Later work

revealed rhythmic expression of mRNA for multiple clocks

genes in the ovine PT (Lincoln et al. 2002). Of note

Cryptochrome1 (Cry1) and Per1 mRNAs were found to be

expressed immediately following the onset and offset of

the daily melatonin signal, respectively, in both long and

short photoperiod (Lincoln et al. 2002). As formation of

PER and CRY protein complexes is an important

functional step in circadian transcriptional repression, it

has been hypothesised that melatonin signal duration

may transmit day length information via the differential

formation of such protein complexes (Lincoln et al. 2003).

The demonstration that melatonin onset per se induces PT

expression of Cry1 (Dardente et al. 2003b, Hazlerigg et al.

2004), made it one of the first genes reported to be acutely

stimulated by melatonin. However, subsequent work

revealed that melatonin onset stimulates a range of

genes and transcription factor pathways (Dupre et al.

2008, Fustin et al. 2009, Unfried et al. 2010), indicating

that a molecular coincidence model need not necessarily

be dependent upon clock genes, but could conceivably

include acute regulation of multiple genes and their

protein products. Direct testing of the coincidence

model has not yet been possible to a large degree due to

the technical difficulty associated with in vivo genetic

manipulation in photoperiodic species.
Melatonin signalling in neuroendocrine tissues
during early development

Although the PT has proved to be a valuable model tissue

for the study of melatonin action in adult animals,

progress has been made understanding the physiological

actions of melatonin elsewhere in the body at various

developmental stages. Melatonin became a focus of

research on maternal-foetal signalling, due to its robust

circadian rhythm and its lipophilic nature, which allows it

to cross the placenta (Reppert et al. 1979, Yellon &

Longo 1987, Zemdegs et al. 1988) and even pass into

milk (Reppert & Klein 1978, Illnerova et al. 1993). In

addition to the following examples, evidence indicates

effects of maternal melatonin on foetal and neonatal

endocrine physiology outside of the scope of this review,

including the regulation of adrenal gland (Torres-Farfan

et al. 2011) and adipose tissue (Seron-Ferre et al. 2014)

function.
Published by Bioscientifica Ltd
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Direct regulation of the pituitary pars distalis

The distribution of melatonin receptors is more wide-

spread during embryogenesis than in adulthood,

suggesting novel role(s) for melatonin in early develop-

ment (Davis 1997, Seron-Ferre et al. 2012). Although

developmental changes in melatonin receptor expression

have been reported in neuroendocrine tissues such as the

thyroid and nasal epithelium (Rivkees & Reppert 1991,

Helliwell & Williams 1994), the pituitary gland is the best

studied example.

Initial research in this area demonstrated that mela-

tonin is able to acutely inhibit gonadotrophin-releasing

hormone (GnRH)-stimulated gonadotrophin secretion

from neonatal rat pituitary cells (Martin & Klein 1976).

Developmental loss of melatonin sensitivity in the rat

pituitary was then revealed by the gradual decline of this

endocrine function over the first 2–3 weeks of postnatal

life (Martin & Sattler 1979), together with a parallel

postnatal loss of iodo-melatonin binding sites (Vanecek

1988b). These developmental changes and the

mechanisms of melatonin signalling in gonadotroph

cells are reviewed in detail elsewhere (Vanecek 1999).

Mapping of Mt1 mRNA expression using in situ

hybridisation histochemistry has allowed more detailed

analysis of melatonin sensitivity in the developing rat

pituitary. Consistent with iodo-melatonin binding

studies, the onset of Mt1 expression is at embryonic day

15 (Johnston et al. 2006). During embryogenesis, Mt1

is strongly expressed in the PT (or rostral tip) region of

the anterior pituitary and extends along the ventral

pituitary surface, a region known to house newly

differentiated gonadotroph cells (Scully & Rosenfeld

2002). Direct evidence of melatonin receptor expression

in gonadotroph cells was then provided by co-localisation

of Mt1 with luteinising hormone beta (LHb) and

alpha glycoprotein subunit (aGSU) mRNA in both the

embryonic and neonatal rat pituitary (Johnston et al.

2003b, Johnston et al. 2006). The effects of melatonin

on reproductive physiology in early development are

therefore likely to be, at least in part, via a direct action

on the pituitary gonadotroph cells, in contrast to the

mechanisms driving photoperiodic reproduction in

adults, as previously described.

Investigation of the molecular mechanisms regulating

Mt1 promoter activity has attempted to identify the

mechanisms that drive down-regulation of melatonin

receptor expression in developing pituitary gonadotroph

cells. Sequencing of the rat Mt1 promoter (Johnston et al.

2003c) and subsequent reporter assays (Johnston et al.
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-15-0119
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2003b) suggested the presence of a functional cis-element

for the transcription factor EGR-1 proximal to the Mt1

transcription start site. Expression of EGR-1 in gonado-

troph cells is induced by GnRH and is a molecular

component through which GnRH stimulates LHb

synthesis (Dorn et al. 1999, Tremblay & Drouin 1999). It

was therefore hypothesised that, around late embryogen-

esis in rodents, the onset of pulsatile GnRH secretion from

the hypothalamus induces EGR-1 expression to simul-

taneously stimulate Lhb and inhibit Mt1 transcription. The

hypothesis received support from analysis of the hypogo-

nadal mouse, which is unable to synthesise GnRH and

exhibits a fourfold increase in pituitary Mt1 mRNA

compared to wild type littermates (Johnston et al.

2003b). Further support came from in vitro experiments,

which have shown that endogenous Mt1 mRNA

expression is up-regulated by a GnRH receptor antagonist

in GT1–7 neuronal cells (Ishii et al. 2009) and down-

regulated by a GnRH receptor agonist in the aT3-1

gonadotroph cell line (Bae et al. 2014). However, recent

data have also revealed that pituitary Mt1 expression is

unaltered in adult rats treated with a GnRH receptor

antagonist and also in Egr1K/K mice (Bae et al. 2014). It is

therefore clear that further work is required to fully

elucidate the mechanisms controlling melatonin sensi-

tivity in developing gonadotroph cells.
Synchronisation of foetal circadian rhythms by maternal

melatonin

Circadian clocks have been widely reported in foetal and

neonatal individuals of model species (reviewed in

Seron-Ferre et al. (2012)). Moreover, these clocks are

synchronised (entrained) by maternal factors, during the

early stages of development before the SCN receive

neuronal innervation from the retina (Stanfield &

Cowan 1976, Mason et al. 1977).

Much of the evidence for maternal melatonin in

perinatal circadian entrainment has derived from studies

of the Syrian hamster, which possesses more melatonin

receptors in the SCN of foetal and neonate animals than

adults (Duncan & Davis 1993, Gauer et al. 1998). Whereas

behavioural rhythms of adult hamsters appear insensitive

to melatonin (Hastings et al. 1992), neonate hamsters are

readily entrained to melatonin injections (Grosse et al.

1996). Remarkably, injection of pregnant mothers

entrains rhythms of foetal pups, demonstrating the

effect of melatonin and its ability to cross the placenta

(Davis & Mannion 1988). Evidence for the role of SCN

melatonin receptors in this process comes from elegant
Published by Bioscientifica Ltd
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transplantation studies. Lesioning of the SCN in adult

hamsters renders them arrhythmic, but transplantation of

foetal SCN tissue restores behavioural rhythms that can be

entrained by melatonin (Grosse & Davis 1998).
Pharmacological uses of melatonin

Chronobiotic effects

The ability of exogenously administered melatonin to

phase shift human circadian rhythms was described in the

1980s (Arendt et al. 1985). If given (0.5–10 mg p.o.) before

the natural rise of endogenous melatonin, phase advances

in sleep, core body temperature, melatonin and prolactin

have been observed (Deacon & Arendt 1995, Krauchi et al.

1997, Rajaratnam et al. 2003). By contrast, melatonin

administered in the early biological morning (i.e. 1–4 h

after the core body temperature nadir) can produce phase

delays in circadian timing. This ability of melatonin to

advance or delay clock timing depending on the biological

time of administration has been described in terms of a

phase response curve (PRC) (Lewy et al. 1992, Middleton

et al. 1997, Revell & Eastman 2005, Burgess et al. 2008).

The magnitude of the phase shift is dose-dependent

(Deacon & Arendt 1995, Burgess et al. 2010).

The phase shifting effects of melatonin have been

utilised in the treatment of circadian rhythm sleep–wake

disorders in which the sleep/wake cycle is desynchronised

from the circadian timing system, reviewed in Arendt &

Skene (2005). Appropriately timed melatonin has been

shown to alleviate symptoms of jet lag and night shift

work. Melatonin is also the treatment of choice for non-

24-h sleep–wake disorder suffered by totally blind people

with no conscious light perception (Skene & Arendt 2007).

In this condition, melatonin entrains the free-running

non-24-h circadian rhythms including the sleep–wake

cycle leading to increased night sleep duration and a

reduction in the number and duration of daytime naps.

Melatonin (0.3–5 mg p.o) has also been used in the

treatment of delayed sleep–wake phase disorder (DPSD),

with dosing in the early biological evening (5–6.5 h before

DLMO) proving most effective (Nagtegaal et al. 1998,

Mundey et al. 2005), presumably since this maximises

melatonin’s phase advancing effect according to the

published melatonin PRCs.

A great deal of effort has focused on trying to optimise

melatonin’s phase shifting effect by investigating the best

time of administration (biological time and clock time),

the lowest effective dose, the optimal treatment regimen

(duration), frequency of dosing (set or staggered) and type
http://joe.endocrinology-journals.org
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of formulation (fast or slow release) (reviewed in Arendt

et al. (2008)). More research is still needed so that these

parameters are optimised for each circadian rhythm sleep–

wake disorder.
Acute pharmacological effects

Exogenous melatonin causes an immediate drop in core

body temperature, reduced alertness and increased tired-

ness (Deacon et al. 1994). Studies suggest that these acute

effects are more pronounced if melatonin is given during

the day when endogenous melatonin production is

low/undetectable (Dollins et al. 1994). Transient sleepi-

ness produced following melatonin ingestion before

bedtime most likely accounts for the reduced sleep latency

reported in several studies (Zhdanova et al. 1996, Lemoine

et al. 2007). The effect of melatonin on polysomnographic

sleep is less consistent with studies showing conflicting

results (reviewed in Turek & Gillette (2004)).
Melatonin agonists

The similarity in pharmacology between the MT1 and

MT2 receptors has hampered the identification of selective

agonists to MT1 or MT2. Current melatonin agonists being

developed have high affinity at both the MT1 and MT2

receptors, e.g. agomelatine (S20098, Servier), ramelteon

(TAK-375, Takeda), LY156735 (Eli Lilly), tasimelteon

(VEC-162, Bristol-Myers Squibb Co, licensed to Vanda).

For reviews of these melatonin agonists the reader is

referred to (Turek & Gillette 2004, Zawilska et al. 2009).

These melatonin agonists are in various stages of

development and drug registration. Unfortunately it is

unclear how the efficacy of these novel agonists compare

directly with melatonin in clinical trials since head to head

comparison with melatonin is not a prerequisite for drug

registration.
Perspective/future areas of research

This review has primarily dealt with the generation and

function of physiological rhythms of pineal melatonin

synthesis, which results in the rhythms of melatonin in

the blood. Whereas the timing of the endogenous

melatonin rhythm has been a major focus of the published

literature, what determines the amplitude of the melato-

nin rhythm is less well studied. Melatonin amplitude,

whilst consistent within an individual, is highly variable

between individuals, declines with age and is acutely

suppressed by light at night, as previously described.
Published by Bioscientifica Ltd
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Our recent research has shown reduced melatonin ampli-

tude in type 2 diabetes mellitus compared with age and

weight matched controls (Mantele et al. 2012), consistent

with epidemiological data inversely associating melatonin

concentration with insulin signalling (McMullan et al.

2013) and a broader literature linking melatonin signalling

with glucose homeostasis (Peschke 2008, Karamitri et al.

2013). In this and other scenarios, understanding the

physiological relevance of melatonin rhythm amplitude

therefore warrants further investigation and may provide

novel insights into the physiological roles of melatonin.

One powerful novel tool to understand the

mechanisms underlying links between melatonin, circa-

dian rhythms, sleep and metabolism is metabolic profil-

ing, or metabolomics. We are currently using liquid

chromatography mass spectrometry to characterise 24-h

metabolite rhythms and the effect of sleep and sleep

deprivation on the human metabolome (Ang et al. 2012,

Davies et al. 2014). This will help to better understand

melatonin, circadian timing, sleepKwake regulation and

associated physiological pathways.
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