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Abstract
This review presents the findings that led to the discovery of TRH and the understanding of

the central mechanisms that control hypothalamus–pituitary–thyroid axis (HPT) activity.

The earliest studies on thyroid physiology are now dated a century ago when basal

metabolic rate was associated with thyroid status. It took over 50 years to identify the key

elements involved in the HPT axis. Thyroid hormones (TH: T4 and T3) were characterized first,

followed by the semi-purification of TSH whose later characterization paralleled that of TRH.

Studies on the effects of TH became possible with the availability of synthetic hormones.

DNA recombinant techniques permitted the identification of all the elements involved in the

HPT axis, including their mode of regulation. Hypophysiotropic TRH neurons, which control

the pituitary–thyroid axis, were identified among other hypothalamic neurons which

express TRH. Three different deiodinases were recognized in various tissues, as well as their

involvement in cell-specific modulation of T3 concentration. The role of tanycytes in setting

TRH levels due to the activity of deiodinase type 2 and the TRH-degrading ectoenzyme was

unraveled. TH-feedback effects occur at different levels, including TRH and TSH synthesis and

release, deiodinase activity, pituitary TRH-receptor and TRH degradation. The activity of TRH

neurons is regulated by nutritional status through neurons of the arcuate nucleus, which

sense metabolic signals such as circulating leptin levels. Trh expression and the HPT axis are

activated by energy demanding situations, such as cold and exercise, whereas it is inhibited

by negative energy balance situations such as fasting, inflammation or chronic stress.

New approaches are being used to understand the activity of TRHergic neurons within

metabolic circuits.
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A historical perspective on the hypothalamic
control of the thyroid axis

The advancement of any scientific field requires the

combination of creative new ideas with the development

of technologies and knowledge in related areas; under-

standing the function of the hypothalamus–pituitary–
thyroid axis (HPT) is no exception (Figs 1 and 2). Since

the end of the 19th century, European physicians and

surgeons associated neck swelling (thyroid enlargement,

goiter), with iodine deficiency, cretinism, and myxoedema,
on 60 years of neuroendocrinology.
Grossman and Clive Coen
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Figure 1

Time line. Figure depicts the principal discoveries that contributed to the

actual understanding of TRH neurons and regulation of the hypothalamus–

pituitary–thyroid axis (HPT). Above the blue line are marked some of the

main findings in techniques or in cellular biology. Below are those related

to the HPT axis. Space constraints makes it impossible to cite each piece of

work, and some examples represent the ideas and paradigms of various

authors. BMR, basal metabolic rate; IEGs, immediate early genes; ISH, in situ

hybridization; KO, knock out; ME, median eminence; NGF, nerve growth

factor; POMC, proopiomelanocortin; PVN, paraventricular nucleus;

TH, thyroid hormones; TRF, thyrotropin-releasing factor.
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defining hypothyroid conditions. Magnus-Levy (1895) was

the first to demonstrate that respiratory metabolism was

increased in hyperthyroidism and decreased in myxoe-

dema. Indirect calorimetry allowed measurements of basal

metabolic rate (BMR) and the evaluation of thyroid activity

in clinical practice (Du Bois & Du Bois 1915, Harris &

Benedict 1918). Soon it was recognized that stressful

conditions such as fever, acidosis, or starvation modify

BMR (Rowe 1920). In 1919, levothyroxine (3,3 0,5,5 0-

tetraiodothyronine or T4) was characterized, and then

synthesized in 1926. Triiodothyronine (3,3 0,5-triiodo-L-

thyronine or T3), which proved more active than T4, was

discovered 30 years later (reviewed in Tata 2013). Since RIAs

were not available until the 1960s (Yalow & Berson 1959),

thyroid function was initially assessed in animals and later

in humans, by administering 131I and measuring radio-

activity in the neck at different times (Astwood & Stanley

1947), or by cytological methods (de Robertis 1948).

The discovery of inhibitors of thyroid function, such as
http://joe.endocrinology-journals.org
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propylthiouracil (PTU), aided in the cure of hyperthyroid-

ism (Astwood 1943). PTU became useful in researching

thyroid hormone (TH) metabolism, and in the discovery of

different deiodinases (Escobar del Rey et al. 1961, Visser

et al. 1983). The inhibition of T3-induced BMR activation in

hypothyroid rats by cycloheximide helped to elucidate that

the actions of T3 require protein synthesis (Tata et al. 1962).

The identification of TH receptors (THRs) followed (Tata

2013), unraveling the multiplicity of effects of TH on

energy metabolism (Mullur et al. 2014). The pituitary

control of thyroid activity had been recognized since the

beginning of the 20th century, although the purification

and identification of thyroid-stimulating hormone (TSH)

spanned several decades (Magner 2014). Semi-purified TSH

preparations from bovine pituitaries demonstrated a

similar structure to other pituitary hormones. It is

composed of two subunits (a and b) and contains

complex carbohydrate moieties that are essential for

bioactivity and clearance (Pierce et al. 1971, Weintraub
Published by Bioscientifica Ltd
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Figure 2

Elements involved in HPT regulation. At the level of the paraventricular

hypothalamic nucleus (PVN), Trh mRNA is transcribed, its expression is

regulated by multiple effectors, processed TRH is released from terminals

localized at the median eminence (ME) in yuxtaposition with tanycytes that

contain deiodinase 2 (D2) and pyroglutamyl peptidase II (PPII). In response

to nutrient status, arcuate neurons synthesizing POMC/CART or NPY/AgRP

project to the PVN and activate or inhibit (respectively) TRH neurons.

Released TRH may be degraded by PPII before reaching portal vessels that

transport it to the pituitary where it controls synthesis of TSHb and

glycosylation of both TSH subunits (a and b) to form bioactive TSH. At the

thyroid, TSH stimulates synthesis and release of T4 that is modified at target

tissues by deiodinases (e.g. D1 and D2).
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et al. 1989). TSH extracted from bovine or human

post-mortem pituitaries was used in research, RIA and

clinic for almost three decades. RIA determinations of

plasma TSH concentration facilitated the conclusive

demonstration of the negative feedback effects of TH on

TSH secretion from the pituitary (Reichlin & Utiger 1967)

and, together with serum TH (total and free) quantifi-

cation, the evaluation of thyroid status (Biondi &

Wartofsky 2014). TSH stimulation tests made it possible

to distinguish between primary and secondary hypo-

thyroidism (Querido & Stanbury 1950). By the 1980s,

the sequence of TSH subunits became available with

the isolation of their cDNAs (Fiddes & Goodman

1981, Wondisford et al. 1988) and the clinical use of

recombinant human TSH (hTSH), which eliminated the

health risks associated with the use of contaminated
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-15-0124
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hTSH isolated from post-mortem tissues (Weintraub &

Szkudlinski 1999).

Physiological support for the existence of the hypo-

thalamic control of pituitary–thyroid function started

with the pioneering work of Uotila on pituitary-stalk

sections (Uotila 1939) and was further substantiated by

complementary approaches such as electrical stimulation,

electrolytic lesions of median eminence (ME) or diverse

hypothalamic nuclei, administration of hypothalamic

extracts, and histological observations under different

physiological conditions (Greer 1952, Brown-Grant et al.

1957). Diminished basal thyroid activity in rabbits was

observed after pituitary-stalk transections had been

made, and a piece of wax paper had been placed between

sections to eliminate vascular regeneration (Brown-Grant

et al. 1954).
Published by Bioscientifica Ltd
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Discovery of TRH

From Harris’ initial proposal that the master gland, the

adenohypophysis (or anterior pituitary), was under the

control of factors released from the hypothalamus to

the portal circulation (Harris 1950), it took almost 20

years to identify the first hypophysiotropic molecule.

Various groups attempted to characterize the thyro-

tropin-releasing factor (TRF), but failed to purify it to

homogeneity. They made some valid conclusions such as

its non-reactivity to ninhydrin which implied a blocked

NH2 terminus (Schreiber et al. 1963), its localization to

several brain areas, or variations in the TRF-bioactivity of

tissue extracts from animals of different thyroid status

(Shibusawa et al. 1956, Reichlin 1989). Hard and

competitive work for over 10 years, around 1–5 million

pig or ovine hypothalami, cumbersome chromatographic

techniques, and some fortuitous findings by the groups of

Schally and of Guillemin enabled the isolation of the

tripeptide (pyro)Glu-His-Pro-NH2, which was named thyr-

otropin-releasing hormone (TRH; Bøler et al. 1969, Burgus

et al. 1969). The term ‘factor’ changed to ‘hormone’ when

its structure was identified. An important breakthrough

was the development of bio-assays to quantify pituitary

hormones released in vitro (Guillemin & Rosenberg 1955).

The peculiar N- (pyroGlu) and C-terminal (amide) residues,

that delayed determination of TRH structure, proved

essential for the biological activity of TRH, as chemical

modifications were required to synthesize an active

peptide based on the amino acid composition of the

purified biologically active substance (Glu, His and Pro;

Vale et al. 1973).

Once synthetic TRH became available, it was quanti-

fied by RIA in several tissue extracts, and detected not only

in the hypothalamus but also in other brain areas, blood,

and urine of several species (Jackson & Reichlin 1974,

Winokur & Utiger 1974). Immunocytochemical tech-

niques localized TRH in nerve terminals of the ME, in

various hypothalamic nuclei as well as in various brain

areas including the septum, nucleus accumbens or brain

stem, where it plays a neuromodulatory role (Hökfelt et al.

1975, 1989, Lechan & Jackson 1982, Gary et al. 2003).
Metabolism of TRH

Biosynthesis

Soon after TRH chemical characterization, attempts began

to elucidate its mode of synthesis. The initial work on the

biosynthesis of neuropeptides, performed during the
http://joe.endocrinology-journals.org
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1970s, was based on the incorporation of radioactive

aminoacids, the availability of antibodies recognizing

various forms, and sequential purification steps. Neuro-

physin and adrenocorticotropic hormone were found to be

synthesized from precursor proteins (Mains & Eipper 1976,

Gainer et al. 1977) in a similar manner to secretory proteins

in other systems (Steiner et al. 1967, Kemper et al. 1972).

These methods proved inadequate for TRH as incorpor-

ation of radioactive proline into the peptide was too low

in the hypothalamic fragments used (McKelvy et al. 1975).

The high concentrations of TRH in frog skin, and the

knowledge that amidated peptides arose from glycine at

their C-terminal end, allowed the isolation of a cDNA

containing a partial sequence of the Trh precursor from a

cDNA library screened using oligonucleotide mixtures

containing the triplets that coded for Gln-His-Pro-Gly

(Richter et al. 1984). This approach was unsuccessful in a

hypothalamic rat cDNA library, probably because of the

lower level of expression of Trh mRNA (Jackson 1989). The

ingenious approach of synthesizing the peptide Cys-Lys-

Arg-Gln-His-Pro-Gly-Lys-Arg-Cys, with an SdS bond

linking the cysteines, left the middle portion of the

molecule exposed to elicit an antibody able to detect this

internal sequence. This antibody was used to identify

the TRH precursor in an expression library of rat hypo-

thalamic cDNAs, which isolated rat Trh cDNA (Lechan et al.

1986, Jackson 1989) and characterized the Trh gene

(Lee et al. 1989).

The Trh-gene proximal promoter contains response

elements (RE) to transcription factors whose binding was

revealed by chromatin immunoprecipitation assays; for

example, receptors for TH, or for glucocorticoid receptors

(GR:GRE), CREB (CRE), cJun/cFos (TPA response element),

STAT3, krueppel/Sp1, and GC-boxes for growth factor

signaling (Joseph-Bravo et al. 2015). The protein codified

by the rat (r) Trh gene is a precursor (pre-proTRH; 255

amino acids) containing five Gln-His-Pro-Gly sequences

flanked by a pair of basic residues and cryptic peptides in

between (Lechan et al. 1986). As for other neuropeptides

(Loh et al. 2002), proTRH is processed in the

secretory pathway through sequential enzyme activities:

convertases, carboxypeptidase, pyroglutamyl cyclase, and

peptidylglycine a-hydroxylating monooxygenase (Wu &

Jackson 1988, Nillni 2010, Fekete & Lechan 2014).

Antibodies specific for proTRH, together with Trh

cDNA, were used in immunocytochemical and in situ

hybridization analyses that enabled the final identifi-

cation of the paraventricular nucleus (PVN) as the

hypothalamic nucleus with the highest expression of

proTRH precursor (Lechan & Segerson 1989). Further
Published by Bioscientifica Ltd
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studies demonstrated that TRH–hypophysiotropic cells are

confined to the medial and caudal PVN of the rat (Fekete

et al. 2000).
Inactivation

During the initial purification procedures it became

evident that TRH was rapidly degraded in tissue homo-

genates (Redding & Schally 1969) and in plasma (Bassiri

& Utiger 1972). Two soluble enzymes initiate hydrolysis

of TRH and other peptides in vitro: proline endopeptidase

(EC 3.4.21.26) cleaves the proline-amide bond; pyroglu-

tamyl peptidase I (PPI; EC. 3.4.19.3), the pyroglutamyl-

histidine bond. However, these soluble enzymes do not

control intracellular TRH levels in vivo because TRH is

stored inside secretory granules (O’Cuinn et al. 1990,

Joseph-Bravo et al. 1998). A different pyroglutamyl

peptidase was initially detected in serum and termed

thyroliberinase because of its strict specificity for TRH

(Bauer & Nowak 1979). Later, an enzyme with similar

activity and biochemical characteristics was detected in

the membranes of the anterior pituitary and in several

brain regions, and named PPII (EC. 3.4.19.6) or TRH-

degrading ectoenzyme (O’Connor & O’Cuinn 1984, Garat

et al. 1985, Heuer et al. 1998). In the hypothalamus, PPII

is expressed in neurons and in tanycytes whose cyto-

plasmic extensions reach the external layer of the ME, in

proximity to TRH terminals (Joseph-Bravo et al. 1998,

Sánchez et al. 2009). Cloning PPII (Schauder et al. 1994)

led to its identification as a member of the M1 family of

metalopeptidases and, by homology modeling and site-

directed mutagenesis, interrogation of the structural

determinants of its strict omega-peptidase specificity

(Chávez-Gutiérrez et al. 2006). Because PPII is an integral

membrane protein with the active site exposed on the

cell surface (Charli et al. 1988), it is a prime candidate for

TRH hydrolysis in the extracellular compartment, in

particular before TRH reaches the ME–pituitary portal

capillaries (Sánchez et al. 2009).
Release

TRH secreted from the ME enters the portal system to

reach the pituitary. In vivo TRH release has been measured

directly in portal blood of anesthetized animals, or by a

push–pull cannula in the ME. However, these techniques

are difficult to use in order to detect rapid changes in

TRH secretion (Rondeel et al. 1992). In vitro systems were

initially developed to study the mechanisms of neuropeptide

secretion; incubates of the mediobasal hypothalamus,
http://joe.endocrinology-journals.org
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containing the ME, demonstrated TRH release by membrane

depolarization through a CaCC dependent mechanism

consistent with exocytosis (Joseph-Bravo et al. 1979).
TRH at the anterior pituitary

TRH stimulates, in vivo and in vitro, not only the synthesis

and release of TSH from thyrotrophs but also of prolactin

(PRL) from lactotrophs, and in some species also of growth

hormone (GH) from somatotrophs (Galas et al. 2009). The

availability of radiolabeled TRH, and later of its more

stable analog 3Me-His-TRH, facilitated the character-

isation of the specific binding sites in the plasma

membrane of the anterior pituitary (Labrie et al. 1972),

in TSH secreting pituitary tumor cells (Grant et al. 1972),

and in PRL secreting GH3 cells (Hinkle & Tashjian 1973).

This receptor, TRHR1, has been characterized in various

species. The sequence of mouse (m) TRHR1 corresponds

to a seven transmembrane-spanning GTP-binding (G)

protein-coupled receptor (GPCR; Straub et al. 1990);

mTRHR1 cDNA has a high similarity in the protein-coding

regions with orthologs in other mammals and its

expression in anterior pituitary correlates with radioligand

binding studies (Gershengorn & Osman 1996). A second

TRHR (TRHR2) was later cloned and found to be expressed

mainly in the brain (O’Dowd et al. 2000). TRHR1K/K mice

pituitaries are devoid of any TRH-binding capacity, which

suggested that TRHR1 is the only pituitary receptor

(Rabeler et al. 2004).

TRH binds to TRHR1 at various residues of the

extracellular (low binding affinity) and of the trans-

membrane (high binding affinity) domains. The extra-

cellular site is proposed to be the initial place of

interaction, which accounts for the low binding affinity

and slow transformation to a tightly bound conformation

with movement of TRH to the transmembrane site (Engel

& Gershengorn 2007). In GH pituitary tumor cells, TRH

signalling via TRHR1 is conducted through the activation

of a Gq/11 protein and phospholipase C b1 mechanism:

the production of inositol 3 phosphate and diacyl gycerol

affects cellular calcium homeostasis (mobilizing intra-

cellular pools) and activation of protein kinase C (PKC)

(Drummond 1986). The interaction of TRH with TRHR1

induces rapid desensitization of the response due to

multiple events (Hinkle et al. 2012). The ligand–receptor

interaction induces receptor phosphorylation, within

seconds, at multiple Ser/Thr sites in the cytoplasmic

C-terminal tail by a GPCR kinase. TRH receptors bind

to b-arrestin, internalize in clathrin-coated vesicles and

accumulate in early sorting endosomes. They may
Published by Bioscientifica Ltd
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transport to lysosomes or after TRH removal, depho-

sphorylate, and accumulate in recycling endosomes which

reincorporate into the plasma membrane (resensitization).

As b-arrestin is a scaffold for other signaling molecules,

its interaction with the receptor permits cross talk with

other pathways (Hinkle et al. 2012). At the turn of the

21st century the development of bioluminescence

resonance energy transfer, and other techniques to

detect intermolecular interactions, demonstrated the

formation of the TRHR homodimers induced by TRH

(Hinkle et al. 2012). TRH also provokes long-term

transcriptional and posttranscriptional effects that

diminish Trhr1 mRNA levels in rat pituitary GH3 cells, at

least in part, by stimulating Trhr mRNA degradation

(Narayanan et al. 1992).
Regulation of HPT axis activity by TRH and
negative feedback

The HPT axis is regulated by neuronal inputs that

stimulate or inhibit PVN–TRH hypophysiotropic neurons.

Of all TRH neurons expressed in the PVN, not all project to

the ME. TRH–hypophysiotropic cells are enriched in the

medial and caudal PVN of the rat but this differs in the

PVN of the mouse and human (Guldenaar et al. 1996,

Fekete et al. 2000, Fekete & Lechan 2014).

TRH–hypophysiotropic neurons receive afferents from

multiple brain regions. Neurons from the arcuate nucleus

transmit the nutritional status and the suprachiasmatic

nucleus convey circadian cycle information, some

neurons from the brain stem send information when

external temperature drops (Fekete & Lechan 2014, Fliers

et al. 2014, Joseph-Bravo et al. 2015). Stimuli that induce

TRH–TSH release may coordinately increase Trh

transcription.

A multifactorial control is exerted at various steps of

the HPT axis. TRH stimulates TSH synthesis in pituitary

cells by increasing mRNA levels of Tshb and Tsha

(Shupnik et al. 1986). Transduction pathways involve

CaCC/calmodulin for TSHb activation or the PKC–MAPK

pathway for TSHa (Hashimoto et al. 2000). TRH regulates

the glycosylation pattern of TSH, which increases its

biological activity and half-life (Weintraub et al. 1989,

Szkudlinski et al. 2002).

TSH stimulates synthesis and release of TH which are

transported in the blood by T4-bound globulin, transthyr-

etin or albumin, in different proportions depending

on the species (Zoeller et al. 2007). More than 70% of

TSH-stimulated TH release corresponds to T4 (Maia et al.

2011). The peripheral conversion of injected T4 has been
http://joe.endocrinology-journals.org
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recognized since the 1950s (Tata 1958), and was followed

by characterization of the enzymes responsible (Silva &

Larsen 1977, Visser et al. 1983, Gereben et al. 2008). The

three identified deiodinases set the intracellular and

peripheral levels of T3: deiodinase type 1 (D1), the enzyme

inhibited by PTU is mainly expressed in liver, kidney,

pituitary, and thyroid, and converts T4 to either T3 or,

reverse T3. D2, expressed in brain, pituitary, thyroid, BAT,

and heart has a higher affinity for T4 than D1, and

transforms T4 to T3; D2 is enriched in tanycytes and makes

T3 available to surrounding neurons in the hypothalamus.

D3 is expressed in brain, placenta, and skin and inactivates

T4 and T3. D1 and D3 are localized to the plasma

membrane whereas D2 is localized to the membranes of

the endoplasmic reticulum, which facilitates ready access

to the nucleus for T3 (Gereben et al. 2008). The activity and

expression of these enzymes are modulated, in a cell-

specific manner, by various effectors including TH; T3

decreases dio2 expression and increases that of dio1 and

dio3, whereas T4 decreases the activity of D2 by increasing

its ubiquitination and proteosomal degradation (Gereben

et al. 2008, Abdalla & Bianco 2014). Peripheral conversion

of T4 to T3 arises mainly from D2 in euthyroid, or via D1 in

thyrotoxic animals (Maia et al. 2011).

TH feedback on HPT axis activity was conclusively

demonstrated in the pituitary when TSH RIA became

available (Reichlin & Utiger 1967, Reichlin et al. 1970). At

the hypothalamus evidence was indirect, supported by

the diminished goitrogenic effect of PTU in animals with

lesions between the PVN and the ME, and the response to

thyroidectomy in lesioned-PVN rats that presented with

diminished TSH secretion (Greer 1952, Martin et al. 1970).

It is now evident that the HPT axis is modified by the

thyroid status in a concerted fashion at multiple levels.

Hypothyroidism increases Trh mRNA levels in the PVN

(Koller et al. 1987, Segerson et al. 1987), proTRH processing

(Perello et al. 2006), TRH release from ME (Rondeel et al.

1992), TSH and TRHR1 synthesis in the pituitary (Shupnik

et al. 1986, Schomburg & Bauer 1995), and TSH serum

concentration (Biondi & Wartofsky 2014). In contrast, the

expression of the TRH-degrading enzyme in tanycytes is

decreased in hypothyroid animals (Lazcano et al. 2015).

Opposite changes occur in hyperthyroidism (Supple-

mentary Table 1, see section on supplementary data

given at the end of this article; Chiamolera & Wondisford

2009, Costa-e-Sousa & Hollenberg 2012, Fekete & Lechan

2014, Fliers et al. 2014, Lazcano et al. 2015). The

T3-negative transcriptional regulation of Trh and Tsh

occurs primarily through TRb2 (Abel et al. 2001, Chiamo-

lera & Wondisford 2009, Sugrue et al. 2010), whose
Published by Bioscientifica Ltd
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expression in the pituitary is down regulated by T3, and

modestly down-regulated by TRH (Lazar 1993). TH

inhibit TSH secretion even faster than TRH or TSH

transcription. This response may be related to the rapid

up-regulation of expression and activity of the TRH-

degrading enzyme by T4 in tanycytes. Increased inacti-

vation of TRH released from the ME could account for

diminished TSH release, supporting the external layer of

the ME as an ultimate critical control point in modulating

TRH concentration on its passage to the portal system

(Sánchez et al. 2009).

At a hypothalamic level, T4 is taken up from the

circulation by tanycytes that convert it to T3 by D2; T3 is

then released in the surrounding neuropil and taken up by

neurons (Tu et al. 1997). Several TH transporters have been

identified recently. Among the best characterized in the

brain is the monocarboxylate transporter 8 (MCT-8),

which recognizes different TH, and is expressed in various

tissues and cell types including neurons, endothelial cells,

oligodendrocytes, astrocytes and tanycytes. Another is the

organic anion-transporting polypeptide 1C1 (OATP1C1),

which is found in tanycytes and endothelial cells. Its

expression is modulated by TH and it has preferential

substrate specificity for T4 compared to other TH. Both

participate in transporting TH across the blood brain

barrier in mice but OATP1C1 does not in humans.

Mutations in SLC16A2, the gene that encodes MCT-8,

can produce severe neurological impairments in humans

(Visser et al. 2011, Wirth et al. 2014).

The specificity of TH feedback effect on TRH

expression for PVN–TRH hypophysiotropic neurons vs

other hypothalamic neurons expressing TRH does not

relate to an exclusive expression of THRs or TH

transporters (Fekete & Lechan 2014, Joseph-Bravo et al.

2015). D3 is found in only 27% of TRH-immunoreactive

varicosities present in the ME (Kalló et al. 2012). An

hypothesis recently put forward is that T3, transformed

from T4 by D2 in tanycytes, is taken up by TRH nerve

terminals in the ME and transported in a retrograde

fashion to the PVN, where it inhibits TRH transcription

(Fekete & Lechan 2014).

Knock out (KO) animals for various elements involved

in HPT axis regulation have revealed the critical steps

in HPT axis function (Joseph-Bravo et al. 2015). The

importance of the effects of TRH on TSH glycosylation and

activity (Weintraub et al. 1989) has been demonstrated by

comparing the phenotypes of TRH-KO, THRb-KO, and the

double mutant. Increased TSH serum levels but reduced

TSH bioactivity accounts for the low circulating T4

concentration (Nikrodhanond et al. 2006), similar to that
http://joe.endocrinology-journals.org
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observed in humans with hypothalamic hypothyroidism

(Beck-Peccoz et al. 1985), or in TRHR1K/K mice that have

normal TSH levels but low circulating T3 and T4

concentrations (Rabeler et al. 2004). D1-, D2-, and

D1D2-KO show compensatory mechanisms in the inter-

play between hypophysiotropic TRHergic neurons,

pituitary TSH expression and release, which in com-

bination maintain serum levels of T3 stable despite altered

serum concentrations of T4 and TSH (Abdalla & Bianco

2014, Galton et al. 2014). D2-KO specifically in the

pituitary produced contradictory results regarding TRH

or TSH expression, albeit data coincide that these mice

maintain constant T3 serum levels (Fonseca et al. 2014,

Luongo et al. 2015). MCT8-KO mice have increased Trh

expression, which further confirms that TH uptake into

tanycytes is required for negative feedback on Trh

expression (Horn et al. 2013).
Energy homeostasis and the HPT axis

Negative energy balance

The effects of iodine deficiency or nutritional status on

BMR and thyroid activity were observed a century ago

(Hinz 1920) and later confirmed when it was found that

TH serum concentrations were reduced during fasting or

food restriction (Reichlin 1957, Palmblad et al. 1977,

Harris et al. 1978). After fasting, TSH serum levels are low

or normal, but ME–TRH release and Trh mRNA levels in

the PVN decreased (Blake et al. 1991, Van Haasteren et al.

1995, Fekete & Lechan 2014). Pituitary dio2, Thrb2, and

Tshb mRNA levels are diminished (Boelen et al. 2006), as

well as hepatic D1 activity. In contrast, dio2 hypothalamic

expression and serum corticosterone are increased (Diano

et al. 1998). Another element involved in the response to

fasting is PPII activity in tanycytes which is up-regulated at

a time (48–72 h) when the expression of Trh in the PVN

tends to reinitiate (Lazcano et al. 2015). These changes

differ from those observed in primary hypothyroidism.

The discovery of the adipostatic hormone leptin (Zhang

et al. 1994) helped unravel the mechanism of fasting-

induced inhibition of the HPT axis. Leptin is released from

adipose tissue proportionally to body fat and in response

to caloric intake, while its serum levels decrease rapidly

during fasting (Hardie et al. 1996). Leptin administration

impedes fasting-induced inhibition of Trh mRNA levels

in the PVN (Légrádi et al. 1997). In response to leptin, its

receptor (LepRb) activates several transcription factors

including the STAT3 which binds to the Trh promoter and

increases Trh transcription (Guo et al. 2004). Trh mRNA
Published by Bioscientifica Ltd
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levels in the PVN are increased by leptin, either directly

through LepRb activation, or indirectly through afferents

from the arcuate nucleus. In the arcuate nucleus, two

neuronal groups synthesize orexigenic (neuropeptides Y

(NPY)/Agouti-related peptide (AgRP)) or anorexigenic (pro-

opiomelanocortin (POMC), precursor of alpha-melanocyte

stimulating hormone (aMSH)/cocaine- and amphetamine-

regulated transcript (CART)) neuropeptides. These

NPY/AgRP and POMC/CART neurons are tightly regulated

bymetabolic signals suchas leptin, insulin,orghrelin.aMSH

signals through the melanocortin receptor 4 (MC4R) that

also recognizes AgRP but as an inverse agonist. TRH neurons

receive afferents from aMSH, NPY, and AgRP neurons, the

former stimulates and the latter two inhibit Trh mRNA levels

(Fekete & Lechan 2014). aMSH induces CREB phosphory-

lation in TRH neurons in vivo and in hypothalamic neuronal

culture where it increases Trh transcription (Harris et al.

2001, Sarkar et al. 2002). The analysis of mice lacking both

MC4R and NPY demonstrates that fasting-induced suppres-

sionof the central arm of theHPTaxis requires NPY, and that

a second pathway based in the liver, that enhances the

catabolism of TH during fasting, requires MC4R and NPY

(Vella et al. 2011).

Non-thyroidal illness syndrome (NTIS) is a clinical

condition that presents, as in fasting, with a low T3 but

normal or slightly decreased TSH serum levels, occuring

during acute or chronic inflammation, and sepsis. The

mechanisms involved differ to those produced by fasting.

Despite low Trh mRNA levels, those of the arcuate nucleus

POMC are not changed, and deiodinase activity is higher

than that detected after fasting; in particular, for D2 in

tanycytes and D1 and D3 activities in liver and muscle

(Boelen et al. 2011, Fekete & Lechan 2014, Fliers et al.

2014). It has been proposed that while leptin is the main

regulator of fasting induced changes in the HPT axis,

deiodinase activity plays a major role during NTIS (Boelen

et al. 2011).
Positive energy balance

In contrast to the relatively detailed knowledge about the

central aspects of HPT axis regulation during energy

deficit, less is known about regulation during energy

excess. Although hypothyroid individuals tend to gain

weight, obese individuals have normal or slightly

enhanced total and free T3 levels, which are postulated

as an adaptation to the increased metabolic demands of

increased body weight (Strata et al. 1978, Reinehr 2010).

Diet-induced obesity (DIO) enhances HPT axis activity in

male rats, as demonstrated by increased Trh mRNA levels
http://joe.endocrinology-journals.org
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in the hypothalamus/PVN and serum TSH concentration.

This increase in HPT axis activity may be due to enhanced

circulating leptin levels acting directly on PVN–TRH

neurons, independently from POMC neurons, thus

bypassing the drop of leptin sensitivity which occurs in

the ARC during DIO, or through other circuits that

maintain leptin sensitivity (Araujo et al. 2010, Perello

et al. 2010). Likewise, mice fed a high fat diet for 7–20

weeks have an activated HPT axis, with higher hypo-

thalamic Trh mRNA levels, and serum TSH concentration

than mice on a control diet. This study also indicates that

deiodinases activities adjust in tissue, time and obesity-

tendency specific ways, contributing to metabolic

responses to DIO (Xia et al. 2015).
Energy demands activate the HPT axis

Energy demanding situations such as hypothermia acti-

vate the thyroid (Dempsey & Astwood 1943, Brown-Grant

et al. 1954). The cold response is blunted in pituitary-stalk

operated rats (Uotila 1939) and after PVN-electrolytic

lesions (Ishikawa et al. 1984). An acute cold exposure

rapidly and transiently augments Trh mRNA levels in the

PVN, followed by increased TSH in serum and T4 at a later

time (Zoeller et al. 1990, Uribe et al. 1993). Cold-induced

TRH expression is independent of circulating TH concen-

tration (Zoeller et al. 1990) or of nutritional status

(Jaimes-Hoy et al. 2008), but is inhibited by a

previous stress exposure (Uribe et al. 2011) or corticoster-

one injection (Sotelo-Rivera et al. 2014). Humans

exposed to cold for over 60 h activate the HPT

axis, which is not inhibited if food intake is reduced

(Joseph-Bravo et al. 2015).

Other examples of HPT axis activation are observed

in response to an acute increase in physical activity

(Fortunato et al. 2008, Gutiérrez-Mariscal et al. 2012) or

after 2 weeks of voluntary exercise in rats (Uribe et al. 2014).

Wheel running diminishes food intake by 18% compared

to sedentary animals. In the pair-fed group, body weight

gain diminished to the same extent as the exercised.

However, adipose tissue mass and leptin serum levels

were reduced exclusively after exercise; Trh mRNA in the

PVN and TSH serum levels diminished, compared to naı̈ve

rats, more in the pair-fed than in the exercised group; only

pair-fed animals had low T3 serum levels. The inhibition of

the HPT axis caused by diminished food intake was thus

partially compensated with exercise and the changes to all

the parameters of the HPT axis correlated with distance run

and loss of fat mass (Uribe et al. 2014). These results suggest

that although TH and nutritional status modulate the basal
Published by Bioscientifica Ltd
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state of the HPT axis, immediate energy demands may

override leptin or TH signaling.
Stress interferes with HPT axis activity

Another important modulator of HPT activity long

recognized is the inhibitory effect of stress. The differential

effects of physical and emotional stress on HPT activity

were elegantly shown by Harris’s group, who compared

thyroid activity after physical or emotional stress, in intact

or adrenalectomized rabbits. A corticosterone injection, or

stress, inhibits thyroid activity. However, only the effects

of the emotional stressor (restraint) were avoided when

pituitary-stalk sections were performed supporting an

effect at hypothalamic level (Brown-Grant et al. 1957).

Restraint indeed decreases rat Trh mRNA levels in the PVN

and, as in other stressors, serum TSH (Du Ruisseau et al.

1978, Gutiérrez-Mariscal et al. 2012), but the effects of

chronic stress depend on the type, intensity and duration

(Armario et al. 1984). Because long-term stress affects

many metabolic parameters that may regulate the

HPT axis, direct cause-effects are difficult to discern

(Joseph-Bravo et al. 2015).

Corticosterone affects the HPT axis. Injected into

adrenalectomized rats for several days it inhibits PVN Trh

expression (Kakucska et al. 1995) whereas, an acute

injection is stimulatory. However, if injected 30 min

prior to cold exposure, the cold-induced stimulation of

PVN Trh expression or TSH serum levels is blunted (Ranta

1975, Sotelo-Rivera et al. 2014). Primary hypothalamic-cell

cultures have provided information regarding potential

regulators of the Trh promoter. TRH transcription is

rapidly increased by agents that cause TRH release, such

as noradrenaline or cAMP analogs that induce CREB

phosphorylation and binding of pCREB to the Trh

promoter. Corticosterone, which activates GR and its

binding to GRE, also increases Trh expression, albeit less

than cAMP analogs. However, if corticosterone and cAMP

analogs treatments are combined, Trh transcription is no

longer stimulated and pCREB or GR do not bind to their RE

(Dı́az-Gallardo et al. 2010), CREB phosphorylation is

blunted and the catalytic subunit of phosphokinase

(PKAc) interacts with GR in the cytosol, which explains

the observed cAMP signaling interference induced

by glucocorticoids (Sotelo-Rivera I, Cote-Vélez A,

Dı́az-Gallardo M, Charli JL, Joseph-Bravo P, unpublished

observations). These in vitro results may explain why stress

can alter PVN Trh mRNA response to an acute cold

stimulus (Joseph-Bravo et al. 2015). Combining in vitro

and in vivo paradigms will continue to provide important
http://joe.endocrinology-journals.org
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insights into the mechanisms involved in regulating the

activity of the HPT axis.
Hypopysiotropic TRH neurons are involved in
PRL release

Multiple effectors control PRL release. Soon after the

discovery of TRH, evidence supported the hypothesis that

TRH was one of the prolactin releasing factors. TRH

stimulates PRL secretion either in vivo or in vitro (Jacobs

et al. 1971, Tashjian et al. 1971). Suckling stimulates TRH

biosynthesis in the PVN and release from the ME (Fink

et al. 1982, Uribe et al. 1993, Van Haasteren et al. 1996,

Sánchez et al. 2001). TRH antisera inhibit suckling-

induced PRL release (de Greef et al. 1987). While dopamine

exerts a tonic inhibition on PRL release in vivo, its release

into the portal blood is inhibited by suckling, an event

which potentiates TRH-induced PRL secretion (Martinez

de la Escalera & Weiner 1992). However, TSH is neither

released by suckling, nor PRL by cold exposure (Uribe et al.

1993, Van Haasteren et al. 1996, Sánchez et al. 2001).

This discrepancy may be explained by CART which

inhibits PRL release and its expression is upregulated in

hypophysiotropic TRH neurons by cold but not by

suckling (Sánchez et al. 2007). TRH and TRHR1 KO mice

have shown that while TRH is necessary to sustain PRL

secretion during lactation, pups from KO dams grow

normally, suggesting that TRH is not essential for

suckling-induced PRL release (Rabeler et al. 2004, Yamada

et al. 2006).

Contrary to data showing that anterior pituitary PPII

does not regulate the response of thyrotroph response to

TRH, there is evidence that in lactotrophs the intensity of

TRH action is under PPII control. PPII is expressed in

lactotrophs and its knockdown or inhibition enhances

TRH-induced PRL release (Cruz et al. 2008). PPII expression

and activity are enhanced in vivo by TH and down-

regulated by estrogens (Schomburg & Bauer 1995, 1997).

In anterior-pituitary cultured-cells, PPII activity is rapidly

enhanced by the removal of dopamine and addition of

TRH (Bourdais et al. 2000). These results suggest that PPII is

controlled by signals that shape PRL secretion in response

to TRH; regulation of PPII may in turn alter PRL release.

Although many studies show that TRH acts directly

on lactotrophs, evidence that in hypothalamic slices TRH

provokes a transition from phasic to tonic firing of the

tuberoinfudibular dopaminergic neurons that control

PRL secretion (Lyons et al. 2010) indicates additional

mechanisms that link TRH and PRL secretion.
Published by Bioscientifica Ltd
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Perspectives for the 21st century

DNA recombinant techniques permitted the development

of strategies that helped to characterize the various

regulatory steps of the HPT axis. Transfected cells, KO

and transgenic animals have provided important infor-

mation, although data do not always correspond to what

would be expected from the known physiology of the HPT

axis (Joseph-Bravo et al. 2015). These discrepancies may be

due to the redundancy of effector molecules or their

receptors, and compensatory effects during development.

TRH neurons are considered an important participant in

energy homeostasis (Lechan & Fekete 2006, Levin 2007,

Hollenberg 2008). This is further substantiated by recent

findings on increased Trh and brain derived neurotropic

factor (Bdnf) expression in lean animals compared to their

fat counterparts; BDNF is an important participant in

brain plasticity and metabolism (Byerly et al. 2009,

Cao et al. 2011). Defining the circuits in which TRH

neurons are involved under different circumstances now

seems to be feasible with the combined techniques of

Cre-recombinase, opto-genetics, pharmaco-genetics,

proteomic, and genomic analysis. A recent example is

the demonstration with opto- and chemo-genetic tools

that a TRH projection from the PVN onto AgRP-ARC

neurons drives hunger in mice (Krashes et al. 2014).

New evidence supports the hypothesis that environ-

mental threats (nutrition, toxins) or stressful situations alter

theprogrammingofadultHPTaxis activity (Joseph-Bravo et al.

2015). Considering compelling new data on epigenetic

changes due to stress or other factors, and the effects of

endocrine disrupting chemicals, important considerations are

required in the maintenance of experimental animals.

Epigenetic modifications alter the gene expression of various

elements thatmaymodifyHPTaxisactivity.Forexample,early

life stress increases the methylation of hippocampal GR and

hence its expression, diminishing the inhibitory feedback that

glucocorticoids exert during a response to stress (Turecki &

Meaney 2014, Joseph-Bravo et al. 2015). The opposite is

observedwhenraisinganimals inenrichedenvironments (Cao

et al. 2011). Development may also be affected by endocrine

disruptors which contaminate water and food: experimental

animals and cell cultures are kept in plastic bottles, cages and

plates that leach endocrine disruptors (Préau et al. 2015). To

obtain more reproducible data and help us understand

neuroendocrine physiology, some standards, additional to

those recently established (Bianco et al. 2014), are urgently

needed. Neuroendocrine research should also include gender

and age differences as, to date, most research has been

performed in young adult male rodents.
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